
Vicious Cycles in Distributed
Software Systems

Shangshu Qian Lin TanWen Fan Yongle Zhang

Vicious Cycle: Self-Reinforcing Failures in Distributed Systems

• Vicious Cycle: A self-reinforcing cycle between events and system
degradation during a distributed system’s execution.
• Degradation: e.g., node crash, missing data blocks
• Event: Any other normal execution in the system

Trigger Degradation

Event

Event
Vicious Cycle

. . .

2

• Large-scale impact: the cycle propagates across nodes.
• AWS Storage Service outage, 2011.

• Hard to remediate: breaking the cycle requires careful manual intervention.
• AWS outage took 3 days to recover: fine-grained throttling, adding physical servers.

Vicious Cycles are Catastrophic!

A data race in replication request logic
causes other data servers to crash

Crashed data servers causes
more replication requests

Data servers send
replication requests

. . .𝗫

3

Vicious Cycles are a Major Reason for Cloud Outage

4

• One third of the most catastrophic AWS outages involve vicious cycles.
• Most recent one in 2021.

"Once a system reaches a certain level of reliability,
most major incidents involve a self-reinforcing cycle.” [1]

[1] https://surfingcomplexity.blog/2017/06/24/a-conjecture-on-why-reliable-systems-fail/

Vicious Cycles are Under-Investigated

• Existing studies are limited
• Guo et al. [1] investigated four vicious cycles
• Huang et al. [2] focuses on contention-induced vicious cycles
• Both performed on proprietary cloud systems

5
[1] Guo, Zhenyu, et al. "Failure recovery: When the cure is worse than the disease." 14th Workshop on Hot Topics in Operating Systems (HotOS XIV). 2013.
[2] Huang, Lexiang, et al. "Metastable failures in the wild." 16th USENIX Symposium on Operating Systems Design and Implementation (OSDI 22). 2022.

First Empirical Study on Vicious Cycles in Open-Source D.S.

• 33 Vicious Cycles, on 13 open-source distributed software systems
• Studied systems: HDFS, Hadoop, HBase, Cassandra, Kafka, etc.
• Case collection: Keyword-based searching with manual filtering
• Source-code-level study with 8 bugs reproduced for better understanding

• Each one takes one week on average

6

Contribution
• 16 findings revealing unique characteristics of vicious cycles

• Symptom
• Majority (55%) of vicious cycles’ degradation grows exponentially, while almost half grows linearly.

• Root cause
• Key insight: Vicious cycles are formed due to missing or insufficiently informed error handlers.

• Triggering conditions
• Fixing strategies

• Feasibility study: Automatically detecting & preventing vicious cycles
• Feeding error handlers with required causal information

• The bug dataset, detailed analysis, and code are publicly available[1].
7[1] https://github.com/lin-tan/vcstudy

Root Cause: How are Vicious Cycles Formed?

Vicious Cycle Type Subtype Interference

Unexpected Cycle (60%)
Incorrect Degradation Recovery (36%)

Performance (21%)
Functional (15%)

Unconstrained Retry (24%) Performance (24%)

Unexpected Error (40%)
Undetected Error (18%) N/A
Unhandled Error (22%) N/A

8

Insufficiently Informed Error Handlers

Missing Error Handlers

Root Cause: How are Vicious Cycles Formed?

Vicious Cycle Type Subtype Interference

Unexpected Cycle (60%)
Incorrect Degradation Recovery (36%)

Performance (21%)
Functional (15%)

Unconstrained Retry (24%) Performance (24%)

Unexpected Error (40%)
Undetected Error (18%) N/A
Unhandled Error (22%) N/A

9

Insufficiently Informed Error Handlers

Missing Error Handlers

Root Cause: How are Vicious Cycles Formed?

Vicious Cycle Type Subtype Interference

Unexpected Cycle (60%)
Incorrect Degradation Recovery (36%)

Performance (21%)
Functional (15%)

Unconstrained Retry (24%) Performance (24%)

Unexpected Error (40%)
Undetected Error (18%) N/A
Unhandled Error (22%) N/A

10

Insufficiently Informed Error Handlers

Missing Error Handlers

Unexpected Cycle: Insufficiently Informed Error Handler

• An external trigger causes an error.
• The recovery task performed by the error handler unexpectedly

interferes with the request handling and causes other requests to fail.
• Functional interference: IO error, deadlock, data race, etc.
• Performance interference: CPU, memory, and network contention

11

Trigger Error Recovery Task
Vicious Cycle

Normal TaskInterference

Incorrect Degradation Recovery w/ Functional Interference

• HDFS-12914: HDFS loses a large number of DataNodes after restart.

12

DN Restart FBR Rejected by NN Block Replication
Vicious Cycle

Missing Blocks

Incorrect Lease ID Increased Lock Operations on DN

- DN: DataNode
- FBR: Full Block Report (part of DN registration after restart)
- NN: NameNode

Interference

Unexpected Cycle Example 2: Performance Interference

• Feasibility study 1: Applying exponential backoff

13

Unexpected Cycle (60%)
Incorrect Degradation Recovery (36%)

Performance (21%)
Functional (15%)

Unconstrained Retry (24%) Performance (24%)

More details in the paper!

Unexpected Error’s Propagation Along a Global Cycle

14

Trigger Error Normal Task
VC-Free Env.

Vicious Cycle

• An error that hinders the task completion is propagated along a global cycle.
• Unhandled Error: The error in the cycle is observed, but not properly handled.
• Undetected Error: The error in the cycle is silent, thus, no error handler is implemented.

UE Subtype 1: Deadly Retry of Unhandled Errors

• Retry error-inducing requests on multiple nodes, causing them to fail.

• Root cause: missing causal information
• Unable to infer the causality between the error and the error-inducing retried request

15

UE Subtype 1: Deadly Retry of Unhandled Errors

• Feasibility study 2: Preventing deadly retries
• Infer causality between error and request
• Local agent: Records RPC requests and fatal errors.
• Central coordinator

• Monitors repeated fatal errors from different nodes
• Compares recent RPCs from failed nodes to identify the error-

inducing retried request, and blocks the request
• Result: Successfully prevents two vicious cycles

16

agent

agent

agent

coordinator

UE Subtype 2: Undetected Error Causing Vicious Cycles

• Vicious cycle: Undetected error spread by a normal loop execution.
• Reason: Error detector fails to distinguish an error from a normal execution.
• Majority (83%) are caused by logic errors: hard to detect automatically.

17

Potential Solutions

• Detect & break the cycle: Informed recovery decision
• Infer the causal relationship between requests and errors

• Test for the cycle: Trigger the interference
• Targeted fault injection to trigger the interference between error handler & request handler

18

We need better error handlers with rich feedback information!

More findings and lessons in the paper!

	Slide 1: Vicious Cycles in Distributed Software Systems
	Slide 2: Vicious Cycle: Self-Reinforcing Failures in Distributed Systems
	Slide 3: Vicious Cycles are Catastrophic!
	Slide 4: Vicious Cycles are a Major Reason for Cloud Outage
	Slide 5: Vicious Cycles are Under-Investigated
	Slide 6: First Empirical Study on Vicious Cycles in Open-Source D.S.
	Slide 7: Contribution
	Slide 8: Root Cause: How are Vicious Cycles Formed?
	Slide 9: Root Cause: How are Vicious Cycles Formed?
	Slide 10: Root Cause: How are Vicious Cycles Formed?
	Slide 11: Unexpected Cycle: Insufficiently Informed Error Handler
	Slide 12: Incorrect Degradation Recovery w/ Functional Interference
	Slide 13: Unexpected Cycle Example 2: Performance Interference
	Slide 14: Unexpected Error’s Propagation Along a Global Cycle
	Slide 15: UE Subtype 1: Deadly Retry of Unhandled Errors
	Slide 16: UE Subtype 1: Deadly Retry of Unhandled Errors
	Slide 17: UE Subtype 2: Undetected Error Causing Vicious Cycles
	Slide 18: Potential Solutions

